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 GRAVITY 

EXERCISES 

Section 8.2 Universal Gravitation 

 11. INTERPRET This problem involves Newton’s law of universal gravitation. We can use this law to find the radius 

of the planet given that we weigh twice the amount we do on Earth.  

DEVELOP Newton’s law of universal gravitation (Equation 8.1) is  

1 2
2

GM M
F

r
=  

On a spherical Earth, this gives 2
E E EF GM m R= , where m is the mass of the explorer. On the spherical planet, 

this gives 2
P P PF GM m R= . We are told that the planet has the same mass as the Earth, so ME = MP, and that the 

space explorers weigh twice as much on the new planet, so 2FE = FP. 

EVALUATE Taking the ratio of these expressions for force on each planet and solving for the radius RP of the new 

planet gives 
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ASSESS Notice that the force due to gravity is not linear in the radius of the planet. 

 12. INTERPRET This problem involves Newton’s law of universal gravitation and Newton’s second law. We are to 

use astrophysical data to find the Moon’s acceleration in its circular orbit about the Earth, and verify that it agrees 

with the acceleration we find from Newton’s law of universal gravitation. 

DEVELOP  If we assume a circular orbit, the centripetal acceleration of the Moon is v2/r, where r is the Earth-

Moon separation and v = 2πr/T is the velocity, with T being the orbital period of the Moon. The gravitational force 

between two masses m1 and m2 is given by Equation 8.1, F = Gm1m2/r
2, where r is their separation. The acceleration 

of the Moon in its orbit can be computed by considering the gravitational force between the Moon and the Earth 

and using Newton’s second law (for constant mass, F = ma).  

EVALUATE From the astrophysical data, we find that the Moon’s centripetal acceleration is 

( ) ( )
( )

22 2 82 2
3 2

2 2

4 3.85 10 m2 4 1 d 2.73 10 m/s
24 3600 s27.3 d

r Tv ra
r r T

ππ π −
× ⎛ ⎞

= = = = = ×⎜ ⎟×⎝ ⎠
 

Using Equation 8.1, the gravitational force between the Earth (mass ME) and the Moon (mass MM) is  

E M
2

GM M
F

r
=  

8 
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where r is the distance between the Moon and the Earth. Using the data from Appendix E, Newton’s second law 

gives the acceleration of the Moon as 

( ) ( )
( )

11 2 2 24
3 2E

2 28
M

6.67 10  N m /kg 5.97 10  kg
2.69 10  m/s

3.85 10  m

GMFa
M r

−
−

× ×
= = = = ×

×

⋅
 

This result is within 2% of the result from centripetal acceleration. 

ASSESS What causes the difference in the results? For starters, we have approximated the Moon’s orbit as 

circular, which is not the case. Can you think of other approximations? 

 13. INTERPRET This problem involves Newton’s law of universal gravitation. We are to find the radius of the Earth 

that would result in gravity tripling at the surface of the Earth.  

DEVELOP We shrink the Earth to a radius R such that the force due to gravity at its surface is three times the 

actual value. For this situation, Newton’s law of universal gravitation gives 

E E
2 2

E

3GM m GM m
F

R R
= =  

where RE is the normal radius of the Earth.  

EVALUATE Solving for the ratio of R to RE, we find / 1/ 3 57.7%ER R = = . 

ASSESS Thus, the reduced Earth would have about half the diameter of the actual Earth. 

 14. INTERPRET For this problem we need to use Newton’s second law and Newton’s law of universal gravitation and 

the astrophysical data of Appendix E to find the gravitational acceleration near the surface of (a) Mercury and (b) 
Saturn’s moon Titan. 

DEVELOP The gravitational force between two masses M and m is given by Equation 8.1, F = GMm2/r
2, where r 

is their separation. By Newton’s second law, F = ma, the gravitational acceleration near the surface of the 

gravitating body is  

2

GMa
R

=  

EVALUATE With reference to the first two columns in Appendix E, we find 

(a) 
( ) ( )

( )
11 2 2 24

Mercury 2
Mercury 2 26

Mercury

6.67 10  N m /kg 0.330 10  kg
3.70 m/s

2.44 10  m

GM
g

R

−× ×
= = =

×

⋅
 

(b) 
( ) ( )

( )
11 2 2 24

2Titan
Titan 2 26

Titan

6.67 10  N m /kg 0 .135 10  kg
1.35 m/s

2.58 10  m

GM
g

R

−× ×
= = =

×

⋅
 

ASSESS The measured values are 2
Mercury 3.70 m/sg =  and 2

Titan 1.4 m/sg = , so our results are in reasonable 

agreement with the data. 

 15. INTERPRET This involves using the gravitational force between two identical spheres to calculate their mass.  
DEVELOP According to Newton's law of universal gravitation (Equation 8.1), the identical spheres 

( )1 2m m m= = generate a force between them of 2 2/ .F Gm r=  

EVALUATE Rearranging the gravitational force equation, the mass of each sphere is 

 ( )
6

11 2 2

0.25 10 N0.14 m 8.6 kg
6.67 10 N m /kg

Fm r
G

−

−

×= = =
× ⋅

 

ASSESS Does this mass make sense given the small separation between the spheres? The density of lead is 11.34 

g/cm3, so the radius of each sphere is:  
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 ( )
( )3 3 3

3 8600 g3 5.7 cm
4 4 11.34 g/cm
mr
πρ π

= = =  

So yes, this is consistent with the fact that the centers of the two spheres are 14 cm apart, since there's about 3 cm 

of space between the closest edges of the spheres. 

 16. INTERPRET This problem involves using Newton’s law of universal gravitation to find the gravitational attraction 

between an astronaut and his spaceship, given their mass and separation. 

DEVELOP The gravitational force between two masses m1 and m2 separated by a distance r is given by Equation 

8.1, F = Gm1m2/r
2.  

EVALUATE Inserting the values given in the problem statement into Equation 8.1 gives 

( ) ( ) ( )
( )

11 2 2
81 2

2 2

6.67 10  N m /kg 67 kg 73,000 kg
4.62 10  N

84 m
Gm m

F
r

−
−

×
= = = ×

⋅
 

ASSESS The gravitational force between two masses is always attractive and decreases as 1/r2. Thus, when two 

masses are separated by a very large distance, the force between them becomes hardly noticeable. How long would 

it take an astronaut to return to the shuttle were he to be separated by 10 m? Assuming the shuttle to be massive 

enough that we can ignore its motion, we can apply Newton’s second law to the astronaut to find his acceleration 

and use the kinematic Equation 2.10, 2
0 0 2x x v t at= + + , to find the time. The result is  

( ) ( ) ( ) ( )

0
2 2

0 0

0 0
8

2 2

2 2 2 67 kg 10 m
2 days

4.62 10 N

x x v t at at

x x m x x
t

a F

=

−

− = + =

− −
= ± = = ≈

×

 

Thus, the astronaut would have a chance of regaining his ship. 

 17. INTERPRET We're asked to find the height of the building by using the difference in the gravitational acceleration 

at the top and bottom of the building. The change in the acceleration is due to the change in the distance to the 

center of the Earth.  

DEVELOP In general, the acceleration due to gravity is given in Equation 8.2: 2/ .a GM r=  The acceleration is 

measured at street level, where E ,r R= and compared to reading at the top of the Willis Tower, where E .r R h= +  

Here, ER is the radius of the Earth, and h  is the height of the building. The difference in the acceleration 

measurements should equal: 

 
( ) ( )

E E E
2 2 2 2
E EE E

11
1 /

GM GM GM
a

R RR h h R

⎡ ⎤
⎢ ⎥Δ = − = −

+ +⎢ ⎥⎣ ⎦
 

Since E ,h R we can use the binomial approximation from Appendix A: ( ) 2
E E1 / 1 2 / .h R h R−+ ≈ −  The above 

expression reduces to: E2 / ,a gh RΔ ≈  where we have used 2
E E/g GM R=  for the average value of the 

gravitational acceleration on the Earth's surface. 

EVALUATE Using the above expression for the acceleration difference, we solve for the height of the tower: 

 ( ) ( )
( )

2
6

E 2

1.36 mm/s
6.37 10 m 442 m

2 2 9.8 m/s
ah R
g

Δ
≈ = × =  

ASSESS The 108-story Willis Tower is indeed 442 m tall. Note that present gravimeters can measure differences 

in the gravitational acceleration as small as a few tenths of a milligal, where 5 21 milligal 10 m/s−= is the unit used 

to measure gravity anomalies by geologists. 
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Section 8.3 Orbital Motion 

 18. INTERPRET The object of interest in this problem is the satellite. This problem involves Newton’s second law 

and Newton’s law of universal gravitation and explores the connection between the satellite’s altitude and the 

period of its circular orbit. 

DEVELOP  By Newton’s second law we have F = mac, where ac =v2/r is the centripetal acceleration of the satellite 

with r being the radius of its orbit and v being the orbital speed. The orbital speed can be expressed as the 

circumference divided by the period T, or v = (2πr)/T. The gravitational force between the Earth and the satellite 

provides the centripetal force to keep the orbit circular. Thus, 
22 2

E s s s
2 2

42sGM m m v m m rr
r r Tr T

ππ⎛ ⎞= = =⎜ ⎟⎝ ⎠
 

The altitude is h = r – RE, where RE is the radius of the Earth. 

EVALUATE Solving the above equation for r with T = 2 h = 7200 s, we obtain 

( ) ( ) ( )
1/321/ 3 11 2 2 242

6E
2 2

6.67 10  N m /kg 5.97 10 kg 7200 s
8.06 10  m

4 4
GM T

r
π π

−⎛ ⎞× ×⎛ ⎞
= = = ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⋅
 

The altitude h is 
6 6

E 8.06 10  m 6.37 10  m 1690 kmh r R= − = × − × ≈  

ASSESS The radius of the circular orbit is proportional to 2 / 3T  (Kepler’s third law). This means that if the period 

T is to be doubled, then the radius has to increase by a factor of 2 / 32 1.6≈ . 

 19. INTERPRET This problem involves using Newton’s second law and Newton’s universal law of gravitation to find 

the speed of a satellite in geosynchronous orbit (which means that the satellite completes one orbit in 24 hours, so 

it stays above the same place on the Earth). 

DEVELOP  By Newton’s second law we have F = mac, where ac =v2/r is the centripetal acceleration of the satellite 

with r being the radius of its orbit and v being the orbital speed. The gravitational force between the Earth and the 

satellite provides the centripetal force to keep the orbit circular. Thus, 
2

E s s
2

GM m m v
rr

=  

The orbital speed can be expressed as the circumference divided by the period T, or v = (2πr)/T, which we can use 

to eliminate the radius of the orbit so we can solve for the velocity. 

EVALUATE  Solving the above equation for v with T = 24 h = 86,400 s, we obtain 

( ) ( )11 2 2 24
E 33

2 6.67 10  N m /kg 5.97 10 kg2
3070 m/s

86,400 s
GM

v
T

ππ −× ×
= = =

⋅
 

ASSESS Dividing the circumference by this velocity and solving for the orbital radius gives 

( ) ( ) 73070 m/s 86,400 s
4.22 10 m

2 2
vTr
π π

= = = ×  

which agrees with the result of Example 8.3. 

 20. INTERPRET This problem involves Kepler’s third law. We are asked to find the orbital period of Mars, given its 

orbital radius.  

DEVELOP Kepler’s third law (Equation 8.4) states that  

2 3 2 2
2

3

4 4 constantr TT
GM GMr
π π

= → = =  

Note that this result is independent of the mass m of the orbiting object. Thus, for two celestial bodies whose semi-

major axes are r1 and r2, the ratio of their periods would be  
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3 / 22 3
1 1 1

1 22 3
22 2

T r r
T T

rT r
⎛ ⎞

= ⇒ = ⎜ ⎟⎝ ⎠
 

EVALUATE Using the relation derived above, the period of Mars is  

( ) ( )
3 / 2

3/ 2Mars
Mars E

E

1.52 1 y 1.87 y
r

T T
r

⎛ ⎞
= = =⎜ ⎟⎝ ⎠

 

ASSESS Because Mars has a larger orbit than Earth, we expect it to take longer to complete one revolution. Our 

result compares well with the measured value of 1.88 years given in Appendix E.  

 21. INTERPRET The problem involves finding the orbital period of one of Jupiter's moons.  

DEVELOP We'll assume the orbit is circular, in which case Equation 8.4 gives the period: 
2 2 34 / .T r GMπ= We're told the radius of the orbit, and we can find the mass of Jupiter from Appendix E: 

271.90 10 kg.M = ×   
EVALUATE Io's orbital period is  

 
( )

( ) ( )
32 8

5
11 2 2 27

4 4.22 10 m
1.53 10 s 1.77 d

6.67 10 N m /kg 1.90 10 kg
T

π
−

×
= = × =

× ⋅ ×
 

ASSESS The answer agrees with the rotation period given in Appendix E for the moon Io. 

 22. INTERPRET This problem involves Kepler’s third law, which we can use to find the period of a golf ball orbiting 

the Moon.  

DEVELOP Kepler’s third law (Equation 8.4) states that  

2 3 3
2 4 2r rT T

GM GM
π π= ⇒ =  

Knowing the mass and the radius of the Moon allows us to determine the orbital period of the golf ball.  

EVALUATE Using the equation obtained above, we find the period to be  

( )
( ) ( )

363
3

11 2 2 22

1.74 10  m
2 2 6.51 10  s 109 min

6.67 10  N m /kg 7.35 10  kg )
RT
GM

π π
−

×
= = = × =

× ×⋅
 

ASSESS This result is independent of the mass m of the golf ball. Any mass thrown into this orbit would have the 

same period T.  

 23. INTERPRET We're asked to find the altitude of a spacecraft orbiting Mars given its orbital period.  
DEVELOP Equation 8.4 relates the period and radius of an orbiting body to the mass of the object it is orbiting 
around: 2 2 34 / .T r GMπ= The mass of Mars from Appendix E is: 23

M 6.42 10 kg.M = ×  Once we solve for the 

orbital radius, we will have to subtract the radius of Mars ( )6
M 3.38 10 mR = ×  to find the altitude: M .h r R= −  

EVALUATE The distance between the Mars Renaissance Orbiter and the center of the planet Mars is  

 ( ) ( ) ( )2 21 1 N m2 11 23 633
2 2 24 4 kg

6.67 10 6.42 10 kg 112 60 s 3.659 10 mr GMT
π π

⋅−= = × × ⋅ = ×  

This implies that the altitude of the spacecraft is 

 6 6 6
M 3.659 10 m 3.38 10 m 0.28 10 mh r R= − = × − × = ×  

ASSESS This is 280 km. Compare this to Example 8.2, where it was shown that a low Earth orbit with an altitude 

of 380 km has a period of about 90 min. Since Mars has less mass, spacecrafts must orbit at a smaller radius in 

order to have roughly the same orbital period. 
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Section 8.4 Gravitational Energy 

 24. INTERPRET The problem asks about the change in potential energy as Earth goes from perihelion to aphelion.  

DEVELOP The potential energy difference between two points at distances 1r  and 2r  from the center of a 

gravitating mass M is, according to Equation 8.5: 

 12
2 1

1 1U GMm
r r

⎛ ⎞
Δ = − −⎜ ⎟⎝ ⎠

 

In this case, the gravitating mass is the sun ( )S ,M M=  acting on the Earth ( )E .m M=  These mass values can be 

found in Appendix E. We want the change in potential energy as the Earth moves from its perihelion ( )1 pr r= , 

which is the point of closest approach to the Sun, to its aphelion ( )2 ar r= , which is the most distant point from the 

Sun.  

EVALUATE Using the equation above and the fact that the prefix G stands for 109, the change in potential energy 

as Earth goes from perihelion to aphelion is  

 
( )

( ) ( ) ( )

1 1
S E a p

2N m11 30 24
2kg 32

9

6.67 10 1.99 10 kg 5.97 10 kg 1 1 1.77 10 J
152 14710 m

r rU GM m

⋅−

Δ = − −

× × × ⎛ ⎞= − − = ×⎜ ⎟⎝ ⎠

 

ASSESS Most planetary orbits are elliptical. As the Earth moves further away from the Sun ( )p a ,r r→  the change 

in potential energy is positive. It's as if the Earth is moving out of a gravitational potential well centered at the Sun. 

In order to conserve mechanical energy ( )constant ,K U+ = the Earth's kinetic energy will correspondingly 

decrease slightly.  

 25. INTERPRET This problem deals with the gravitational potential energy of an object. We are asked to find the 

energy required to raise an object to a given height in the Earth’s gravitational field. 

DEVELOP If we neglect any kinetic energy differences associated with the orbital or rotational motion of the 

Earth or package, the required energy is just the difference in gravitational potential energy given by Equation 8.5, 

( ) 11
E E E U GM m R R h −−⎡ ⎤Δ = − +⎣ ⎦ , where h = 1800 km = 1.8 × 106 m. 

EVALUATE Evaluating the expression above with the data from Appendix E gives 

( ) ( ) ( )11 2 2 24
6 6 6

1 16.67 10  N m /kg 5.97 10 kg 230 kg  3.17 GJ
6.37 10 m 6.37 10 m 1.8 10 m

U − ⎡ ⎤
Δ = × × − =⎢ ⎥× × + ×⎣ ⎦

⋅

 

ASSESS In terms of the more convenient combination of constants 2
E EGM gR= , 

( ) 3.17 GJE EU mgR h R hΔ = + =  

 26. INTERPRET The problem asks for the maximum altitude the rocket can reach with an initial launch speed 0 .v The 

problem sounds similar to what we encountered in Chapter 2, but here the acceleration is not constant. Instead, we 

will consider conservation of total mechanical energy. 

DEVELOP If we consider the Earth at rest as approximately an inertial system, then a vertically launched rocket 

would have zero kinetic energy (instantaneously) at its maximum altitude, and the situation is the same as Example 

8.5. Conservation of mechanical energy, U0 + K0 = U + K, can be used to solve for the maximum altitude. 

EVALUATE The conservation equation gives 

2 E E
0

E E

1
2

GM m GM m
mv

R R h
− = −

+
 

or  
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( )
( ) ( )

12
0

12
6

6 11 2 2 24

6

1
2

5100 m/s1 6.37 10  m
6.37 10  m 2 6.67 10  N m /kg 5.97 10 kg

1.67 10  m

E
E E

v
h R

R GM

−

−

−

⎛ ⎞
= − −⎜ ⎟⎝ ⎠

⎛ ⎞
= − − ×⎜ ⎟× × ×⎝ ⎠

= ×

⋅
 

ASSESS If we assume a potential energy change of U mghΔ = , where g = 9.8 m/s2, then the result would have been  

( )
( )

22
60

2

5100 m/s
1.33 10  m

2 2 9.8 m/s
v

h
g

= = = ×  

The decreasing gravitational acceleration g(r) allows the rocket to go higher! 

 27. INTERPRET This problem involves conservation of total mechanical energy, as in Example 8.5, except that for 

this problem, we are given the final altitude and need to find the launch speed.  

DEVELOP Apply conservation of total mechanical energy (Equation 7.7), U0 + K0 = U + K, where  

2E
0 0

E

1
2

GM m
U K mv

R
+ = − +  

and 

E

E

0
GM m

U K
R h

+ = − +
+

 

EVALUATE Solving the expression derived from conservation of total mechanical energy for the initial velocity v 

gives 

( ) ( ) ( ) ( )
11 2 2 24

66

1 12

1 12 6.67 10  N m /kg 5.97 10 kg
6.37 1.1 10 m6.37 10 m

4.29 km/s

E
E E

v GM
R R h

−

⎛ ⎞
= ± −⎜ ⎟+⎝ ⎠

⎛ ⎞
= × × −⎜ ⎟+ ××⎝ ⎠

=

⋅  

ASSESS The positive square root was chosen because we are interested in the magnitude of the speed. Notice that 

our result is larger than the initial speed of 3.1 km/s for Example 8.5, which makes sense because the altitude 

attained (1100 km) is higher than that attained (530 km) in Example 8.5. 

 28. INTERPRET The problem asks about the energy needed to put a mass into the Earth’s geosynchronous orbit. We 

can apply conservation of total mechanical energy to solve this problem.  

DEVELOP The total mechanical energy of an object at rest (K0 = 0) on the Earth’s surface is  

E
0 0 0

E

0
GM m

E U K
R

= + = − +  

(neglecting diurnal rotational energy, etc.), and its total mechanical energy in a circular orbit is given by Equation 

8.8b: 

2
EGM m

E
r

= −  

The difference is the energy required to put the mass into the orbit.  

EVALUATE The distance, measured from the Earth’s center, that corresponds to the geosynchronous orbit is (see 

Example 8.3) 74.22 10  m.r = ×  Thus, the energy necessary to put a mass of m = 1 kg into a circular 

geosynchronous orbit is  
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( ) ( ) ( )
0

11 2 2 24
6 7

7

1 16.67 10  N m /kg 5.97 10 kg 1 kg
6.37 10  m 2(4.22 10  m)

6 10 J

E E E

−

Δ = −

⎛ ⎞
= × × −⎜ ⎟⎝ × × ⎠

= ×

⋅  

ASSESS We report the answer to a single significant figure because we are given the mass of the object to a single 

significant figure. The positive change in energy reflects the need to increase both the gravitational potential 

energy (making it less negative) and the kinetic energy of the mass.  

 29. INTERPRET This problem involves finding the total mechanical energy associated with the Earth’s orbit about the 

Sun. We will assume the orbit is circular.  

DEVELOP Apply Equation 8.8b, using data from Appendix E, to find the total mechanical energy. The two 

masses involved are the mass ME of the Earth and the mass MS of the Sun. 

EVALUATE The total mechanical energy associated with the Earth’s orbital motion is 

( ) ( ) ( )
( )

S
Tot

11 2 2 30 24
33

11

1
2 2

6.67 10  N m /kg 1.99 10  kg 5.97 10 kg
2.64 10  J

2 1.50 10  m

EGM M
E U

r
−

= = −

× × ×
= − = − ×

×

⋅  

ASSESS Alternatively, from Equation 8.8a, ( ) 2 331
tot 2 2 / 2.66 10  JEE K M r Tπ= − = − = − × , consistent with the 

accuracy of the data used in Appendix E. 

 30. INTERPRET This problem involves finding a planet’s mass given the planet’s escape speed, which is the speed 

needed to escape from the planet’s gravitational field.  

DEVELOP Solve Equation 8.7, esc 2v GM r= , for the radius r of the planet.  

EVALUATE From the equation above, the radius of the planet is 

( ) ( )
( )

11 2 2 24
6

2 23
esc

2 6.67 10  N m /kg 2.9 10  kg2 7.67 10  m
7.1 10  m/s

GMr
v

−× ×
= = = ×

×

⋅
 

ASSESS The more massive the gravitating body, the greater is the speed required to escape from its gravitational field. 

 31. INTERPRET This problem involves calculating the escape speed from two celestial bodies with different 

characteristics. 

DEVELOP  Solve Equation 8.7, esc 2v GM r= , for the escape speed vesc for each body. Use data from 

Appendix E as needed. 

EVALUATE (a) For Jupiter’s moon Callisto, the escape speed is 

( ) ( ) ( )11 2 2 23 6
esc 2 6.67 10  N m /kg 1.07 10  kg 2.40 10  m 2.44 km/sv −= × × × =⋅ . 

(b) For a neutron star, ( ) ( ) ( )11 2 2 30 3 8
esc 2 6.67 10  N m /kg 1.99 10  kg 6 10  m 2.10 10  m/sv −= × × × = ×⋅ . 

ASSESS The escape speed from a neutron star is about 70% of the speed of light. 

 32. INTERPRET This problem is about finding the radius of the Earth necessary to give an escape speed of 30 km/s.  

DEVELOP  Solve Equation 8.7, esc 2v GM r= , for the radius r of the Earth using Earth’s mass from Appendix 

E and the given escape speed. 

EVALUATE Given that esc 30 km/s 30,000 m/s,v = =  the would-be radius of the Earth is 

( ) ( )11 2 2 24
5

2 4 2
esc

2 6.67 10  N m /kg 5.97 10 kg2
8.85 10  m

(3.0 10  m/s)
EGM

r
v

−× ×
= = = ×

×
⋅

 

ASSESS Expressed in terms of the real value 66.37 10  mER = × , we have 0.139 ER R≈ . The relationship 

between R and escv with M kept fixed is  
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esc,1 2

esc,2 1

v R
v R

=  

Thus, if we use the fact that the escape speed from the Earth is ecs,0 11.2 km/sv = , we can apply the above equation 

to find the would-be radius if the escape speed were esc 30 km/sv =  The result is  
2 2

esc,0

esc

11.2 km/s 0.139
30 km/sE

vR
R v

⎛ ⎞ ⎛ ⎞= = ≈⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

which is what we found above.  

 
PROBLEMS 

 33. INTERPRET This problem involves Newton’s second law (F = ma) and Newton’s law of universal gravitation. 

We are to find the acceleration at an altitude equal to half the planet’s radius, given the gravitational acceleration 

on the planet’s surface.  

DEVELOP By Newton’s law of universal gravitation, Equation 8.1, we see that the force due to gravity on an 

object is F = GMm/r2. Newtons’ second law F = ma relates force to acceleration, so we can express the 

acceleration on the surface of the planet and at an altitude above the surface equal to one-half of the planet’s 

radius. 

EVALUATE On the planet’s surface, the acceleration due to gravity is 

net 2

2

GMmF mg
r
GMg
r

= =

=
 

At the given altitude h, we substitute 3r/2 for r, then solve the system of equations for gh. This gives 

( ) ( )
2

2 2
h 2 2

2 4 4 22.5 m/s 10.0 m/s
3 9 93 2

GM GMg g
rr

⎛ ⎞= = = = =⎜ ⎟⎝ ⎠
 

ASSESS The acceleration scales with the inverse of the radial distance squared, to increasing the radius by a factor 

3/2 results in a decrease in the acceleration by a factor (2/3)2. 

 34. INTERPRET We can use the conservation of energy to find what height the high-jumper, Javier Sotomayor, might 

jump on a different planetary body.  

DEVELOP Whether he's on Earth, Mars or the Moon, we assume that Sotomayor takes off with the same kinetic 

energy, 0 ,K  and that his kinetic energy is zero at the top of his jump. By conservation of energy (Equation 7.6), 

this change in kinetic energy is equal to the negative of the change in potential energy: 0 120 .K K UΔ = − = −Δ  On 

a generic planetary body, let's call it X, the change in potential energy between the ground ( )1 Xr R= and the height 

Sotomayor reaches ( )2 X Xr R h= +  can be found from Equation 8.5: 

 ( )X
12 X X X X X

X X X X

1 1 1 1 /
GM m

U GM m h R mg h
R R h R

⎛ ⎞
⎡ ⎤Δ = − ≈ − − =⎣ ⎦⎜ ⎟+⎝ ⎠

 

Notice that we have used the binomial approximation from Appendix A, seeing as X X.h R  The term 
2

X X X/g GM R=  is the surface gravity on whichever planetary body (see Appendix E). On Earth, Sotomayor 

reached a height Eh with gravity E ,g  so with the same kinetic energy on planet X he would reach 

( )X E X E/ .h g g h=  

EVALUATE (a) The surface gravity on Mars is 23.74 m/s , so Sotomayor would jump: 

 ( )
2

Mars 2

9.81 m/s 2.45 m 6.43 m
3.74 m/s

h = =  

(b) The surface gravity on the Moon is 21.62 m/s , so Sotomayor would jump: 
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 ( )
2

Moon 2

9.81 m/s 2.45 m 14.8 m
1.62 m/s

h = =  

ASSESS It makes sense that one could jump higher on a planet or moon with lower gravity than Earth. Notice that 

we could have gotten the same result by using Equation 2.11 and assuming that Sotomayor jumps with the same 

initial vertical velocity but under different gravitational accelerations.  

 35. INTERPRET This problem explores the gravitational acceleration of a gravitating body as a function of altitude h. 

DEVELOP Using Equation 8.1, the gravitational force between a massm and a planet of mass Mp is F = GMpm/r2 

where r is their separation, measured from the center of the planet. From Newton’s second law (for constant mass), 

F = ma, the acceleration of gravity at any altitude h = r – Rp above the surface of a spherical planet of radius ,pR is 

( )
2 2

p p p p
2 2

p ppp

( ) (0)
GM GM R R

g h g
R h R hRR h

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠+

 

where g(0) is the value at the surface. Once the ratio g(h)/g(0) is known, we can find the altitude h in terms of Rp. 

EVALUATE Solving for h, we find  

( )
( )p

0
1

gh
R g h

= −  

Therefore, for ( ) ( )0 1 2g h g = , we have p 2 1 0.414.h R = − =  

ASSESS To see if the result makes sense, we take the limit h = 0, where the object rests on the surface of the 

planet. In this limit, we recover g(0) as the gravitational acceleration. The equation also shows that g(h) decreases 

as the altitude h is increased, and g(h) approaches zero as h→ ∞ . 

 36. INTERPRET This problem involves Newton’s law of universal gravitation. We are asked to find the fraction by 

which our weight on the surface of the Earth is reduced due to a spherical mass positioned directly over our head. 

DEVELOP Apply Newton’s law of universal gravitation to find the force exerted on you in the upward direction 

due to the spherical mass of water. Because the mass is spherical, we can treat it as if the entire mass were 

concentrated at the geometric center of the sphere. Divide the result by your weight w = mg by this force to find the 

fraction by which your weight is reduced. 

EVALUATE The force due to the water mass is  

w
w 2

GM m
F

r
=  

where Mw = 4 × 106 kg and r = 15 m. Dividing this result by your weight gives a ratio of  

( ) ( )
( ) ( )

222
7

11 2 2 6
w

9.8 m/s 15 m
1 10

6.67 10  N m /kg 4 10 kg
mgr
GM m

γ −
−

= = = ×
× ×⋅

 

to a single significant figure. 

ASSESS We retain only a single significant figure because this is the precision to which we know the mass of the 

water. If we assume a 70-kg person that is 85% H20, this fraction corresponds to the person’s mass being reduced 

by the following estimated number n of water molecules: 

( ) ( ) ( ) ( )7 3 23
2 20

2

0.85 1 10 70 10 g 6.02 10 H O/mol
2 10 H O

18 g/mo l
n

−× × ×
≈ = ×  

where the constant 6.02 × 1023 is Avogadro’s constant (see Chapter 17 and the discussion preceding Equation 17.2). 

 37. INTERPRET In this problem we want to find the Moon’s acceleration in its circular orbit about the Earth. In 

addition, we want to use the result to confirm the inverse-square law for the gravitational force. 

DEVELOP Using Newton’s second law (Fnet = ma), and the Equation 5.1 for centripetal acceleration, we find that 

the centripetal force that keeps the Moon’s orbit circular is: 
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2 2
M M ME

net M c 2
ME

4M v M r
F M a

r T
π

= = =  

The equation allows us to compute the acceleration of the Moon in its circular orbit. 

EVALUATE Substituting the values given in the problem statement, we find 

( )
( )

2 822
3 2

c 2 2

4 3.84 10 m4
2.73 10 m/s

27.3 d 86,400 s/d
mE

mE

rva
r T

ππ −
×

= = = = ×
×

 

As a fraction of the acceleration due to gravity on the surface of the Earth, this is 

3 2
4c

2

2.73 10  m/s 2.78 10
9.81 m/s

a
g

−
−×

= = ×  

Comparing this result with the ratio of the radius of the Earth to the radius of the Moon’s orbit gives 
2 26

4
8

6.37 10 m 2.74 10
3.85 10 m

E

ME

R
r

−⎛ ⎞ ⎛ ⎞×
= = ×⎜ ⎟⎜ ⎟ ×⎝ ⎠⎝ ⎠

 

which suggests that Newton’s inverse-square law for gravity is valid. 
ASSESS Why do the answers differ by 0.04/2.78 = 1.4%? The problem is not the data used, nor its precision (all 

data is accurate to 3 significant figures). However, we assumed that the Moon’s orbit was circular, which is not 

exactly true. At its nearest, the Moon is some 364 × 103 km from the Earth, whereas at its farthest, it is some 407 × 

103 km from the Earth. This assumption is responsible for the difference in the results obtained above. 

 38. INTERPRET We're asked to derive Newton's law of gravitation from the function for the gravitational potential 

energy.  

DEVELOP Equation 8.6 gives the gravitational potential energy at a distance r from a point mass: 

( ) / .U r GMm r= −  Differentiating with respect to distance r and applying a minus sign should recover the force 

law (Equation 8.1).  

EVALUATE From Equation 7.8, the force is equal to 

 ( ) 2

dU d GMm GMmF r
dr dr r r

− −⎡ ⎤= − = − =⎢ ⎥⎣ ⎦
 

This has the same magnitude as Equation 8.1. The minus sign reminds us that the gravitational force is attractive, 

i.e., it points in a direction opposite to that of the radial vector, .r  

ASSESS Recall that we are free to define the zero of the gravitational potential, but that will only change the 

function by a constant: ( ) / .U r GMm r C= − + When we take the derivative to find the force, this constant will 

disappear. The force is independent of our choice for the zero of the potential. 

 39. INTERPRET This problem involves Newton’s law of universal gravitation, which is used to find the period of a 

circular orbit (Equation 8.4). We are asked to find the half-period of a circular orbit 130 m above the surface of the 

Moon.  

DEVELOP Equation 8.4 gives the period of a circular orbit to be T2 =4π2r3/(GM), where M is the mass of the 

Moon and r is the radius of the orbit. For an orbit at a height h =130 m above the surface of the Moon, r = RM + h. 

Use the data available in Appendix E to evaluate the half period T/2. 

EVALUATE The half period of the astronaut’s orbit was 

( ) ( )
( ) ( )

33 6 6
M 3

11 2 2 22

1.74 10 m 0.13 10 m
3.63 10 s 60.5 min

2 6.67 10  N m /kg 7.35 10  kg
R hT
GM

π π
−

× + ×+
= = = × =

× ×⋅
 

or about an hour. 

ASSESS During this hour, the astronaut could not communicate with the Earth. 

 40. INTERPRET In this problem we are asked to find the speed and period of an object orbiting about a gravitating 

body—a white dwarf.  
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DEVELOP Newton’s law of universal gravitation describes the force between the spaceship and the white dwarf 

that provides the centripetal force for the spaceship to move in a circular path about the white dwarf: 

2

c2

GMm mvF ma
rr

= = =  

where we used Equation 5.1, ac = v2/r, for centripetal acceleration. Solving for the orbital speed gives 

v GMm r=  (Equation 8.3). The period may be found by dividing the orbital circumference by the orbital 

velocity. This gives T2 =4π2r3/(GM) (Equation 8.4). Use the data from Appendix E to evaluate these formulas. 

EVALUATE (a) The radius of a low orbit is approximately the radius of the white dwarf, or RE, so Equation 8.3 

gives 

( ) ( )11 2 2 30
6

6
E

6.67 10  N m /kg 1.99 10  kg
4.56 10  m/s

6.37 10  m
GMv
R

−× ×
= = = ×

×

⋅
 

or about 1.5% of the speed of light.  

(b) The orbital period is 

( )6
E

6

2 6.37 10 m2
8.77 s

4.56 10 m/s
R

T
v

ππ ×
= = =

×
 

which is very short. 

ASSESS According to Kepler’s third law, the relationship between T and M is given by 
2 3 2 3

2 24 4 constantr RT MT
GM G
π π

= ⇒ = =  

Thus, we see that if the mass of the gravitating body M is increased while keeping its radius R constant, then its 

period T must decrease.  

 41. INTERPRET We will be estimating the mass of the galaxy by using the Sun's orbit around the galaxy. This is 

similar to measuring the mass of the Earth by the orbit of the moon.  

DEVELOP Equation 8.4 relates mass of a central object to the period and radius of an orbiting object: 
2 2 34 / .T r GMπ=  However, the central object in this case is a point or a sphere, so we will have to assume that 

the galaxy is spherical and that most of its mass is located interior to the orbit of the Sun.  

EVALUATE Using the radius and period given for the Sun's orbit, the mass of the galaxy is approximately 

 
( )

( ) ( )2

2

32 202 3
41

2 2N m11 8 7
kg

4 2.6 10 m4 2.6 10  kg
6.67 10 2 10 10 s

rM
GT

ππ
π⋅−

×
= = = ×

× × × ×
 

ASSESS If we divide our result by the mass of the Sun ( )301.99 10 kg ,× we find that it is equivalent to about 100 

billion Suns, which is a reasonable estimate for the number of stars in the galaxy. Astronomers plot the orbital 

velocity of objects (such as stars, clusters of stars, or clouds of hydrogen atoms) versus their distance from the 

galactic center to obtain “the rotation curve” for our galaxy and others. What's surprising about these curves is that 

they are flat (i.e., nearly constant) out to distances far beyond the central bright region of most galaxies. One would 

have expected the velocity of orbiting objects to drop off at large radii, as indicated in Equation 8.3. The fact that it 

doesn't seems to imply some sort of “dark matter,” which doesn't emit or scatter light and yet accounts for over 

80% of the mass in a galaxy. Dark matter is currently a topic of great interest in astronomy. 

 42. INTERPRET You ask yourself how much further can a golf ball go on the Moon compared to the Earth.  

DEVELOP The horizontal range of a projectile was given in Equation 3.15: 2
0 0sin 2 / ,x v gθ= where 0v  and 0θ  

are the initial speed and angle of the projectile. If we assume an astronaut can hit a golf ball on the Moon with the 

same speed and angle of the record one-arm hit on the Earth, then the range will be farther due to the lower surface 

gravity on the Moon.  
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EVALUATE Using the above range expression and the surface gravity values from Appendix E, the farthest an 

astronaut could hit a golf ball on the Moon is 

 ( ) ( )
( )

2
E

M E 2
M

9.81 m/s
257 m 1560 m

1.62 m/s
g

x x
g

= = =  

This is a little less than a mile, so Alan Shepard's claim of "miles and miles" was likely an exaggeration. 

ASSESS We have not accounted for the fact that there's no wind resistance on the Moon, thus allowing lunar golf 

balls even greater range than what we have calculated on purely gravitational grounds. Even so, Shepard was 

wearing a bulky suit at the time, which didn't allow him to make a full swing. Although no measurements were 

made, the general consensus is that Shepard's ball couldn't have gone more than a couple hundred meters. 

 43. INTERPRET We're asked to solve a three-body problem, in which three identical stars are situated on the vertices 

of an equilateral triangle.  

DEVELOP We're told that the system rotates. In order for the configuration to remain stable, each star must rotate 

with the same speed. Let's assume the rotational direction is clockwise, as shown in the figure below. 

M

r

L

v

v

v

FF
aC

M

M

308

 
This is uniform circular motion about a radius o/ 2cos30 .r L=  The centripetal acceleration ( )2

c /a v r=  is 

provided by gravity. Specifically, each star is pulled toward the two other stars. Taken separately, the magnitude of 

the force, F, between two stars is: 2 2/F GM L=  (Equation 8.1). Added together, the net force points toward the 

center of the triangle with a magnitude of  

 
2 o

o o
net 2

2 cos30cos30 cos30 GMF F F
L

= + =  

It's this force that supplies the centripetal acceleration: net c .F Ma=  

EVALUATE Pulling together all the information above, we can find an expression for the speed of the stars' 

rotation: 

 net
c o2cos30

F L GMv a r
M L

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

Notice how this has a similar form to Equation 8.3: / ,v GM r=  for the orbital speed of a two-body system. The 

period in the three-body system is: 

 o

2
cos30

r L LT
v GM
π π

= =  

To draw some comparison with Equation 8.4, we square the above equation and use 32 o
4cos 30 ,=  

 
2 3

2 4
3
LT

GM
π

=  

ASSESS This says the period becomes longer, the farther the stars are separated, which makes sense. The system 

rotates faster (shorter period) when the mass of the stars is larger, which also makes sense. 

 44. INTERPRET For this problem we compare, with the help of Kepler’s third law, the orbital periods of two satellites 

located at different distances from the center of the Earth. 

DEVELOP Kepler’s third law (Equation 8.4) states that  
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2 3 2 2
2

3

4 4 constantr TT
GM GMr
π π

= ⇒ = =  

Thus, for the two satellites A and B, the ratio of their period would be  
3/ 22 3

2 3
A A A A

B BB B

T r T r
T rT r

⎛ ⎞
= ⇒ = ⎜ ⎟⎝ ⎠

 

EVALUATE With 2A Br r=  the ratio of their period is  
3 / 2

3 / 22 2.83A A

B B

T r
T r

⎛ ⎞
= = =⎜ ⎟⎝ ⎠

 

ASSESS By Kepler’s third law, the orbital period is proportional to 3 / 2r . Therefore, the further away the satellite 

is from the Earth, the longer is its period.  

 45. INTERPRET This problem requires us to find the semimajor axis of an asteroid’s orbit by using Kepler’s third law 

(Equation 8.4). We are to express the results in terms of the Earth’s orbital period and radius about the Sun. 

DEVELOP Kepler’s third law is 
2 3

2 4 rT
GM
π

=  

where r is the semimajor axis of the elliptical orbit. To find the semimajor axis of the asteroid’s orbit, we take the 

ratio of Kepler’s third law applied to both objects: 
2 3 2 / 3

ast ast ast
ast E

E E E

T r T
r r

T r T
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= ⇒ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

EVALUATE Taking one unit of distance to be the Earth’s orbit (≡ 1 AU) and one unit of time to be the Earth’s 

period (= 1 y), we have 

( )
2 / 3

ast
1417 d 1 y1 AU 2.47 AU

1 y 363 d
r

⎡ ⎤⎛ ⎞ ⎛ ⎞
= =⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦

 

ASSESS Converting this distance to meters gives rast = (2.47 AU)(1.5 × 1011 m/AU) =3.71 × 108 m. 

 46. INTERPRET This problem involves conservation of total mechanical energy. We are to find the speed of an object 

as it hits the Sun, given that it starts from rest 1 AU (astronomical unit, see previous problem) from the Sun.  

DEVELOP The canisters start at rest 1 AU from the Sun and free from the Earth’s gravitational field. The change of 

potential energy as the waste canister travels into the Sun can be calculated by using conservation of total mechanical 

energy, ΔU + ΔK = 0 (Equation 7.6). The change in potential energy may be obtained from Equation 8.6: 

final initial
S ES S ES

1 1GMm GMmU U U GMm
R r R r

⎛ ⎞
Δ = − = − + = − −⎜ ⎟⎝ ⎠

 

where RS is the radius of the Sun and rES is the radius of the Earth’s orbit about the Sun. The gain in kinetic energy 

is ΔK = Kfinal – Kinitial = mv2/2 – 0 = mv2/2. 

EVALUATE Solving Equation 7.6 for the speed v, we obtain 

( ) ( )
S ES

11 2 2 30
8 11

1 12

1 12 6.67 10  N m /kg 1.99 10  kg
6.96 10  m 1.50 10  m

616 km/s

v GM
R r

−

⎛ ⎞
= −⎜ ⎟⎝ ⎠

⎛ ⎞
= × × −⎜ ⎟× ×⎝ ⎠

=

⋅  

ASSESS How much energy per kg would be required to implement this solution? This may be found by using 

(again) conservation of total mechanical energy. The energy per kg to escape the Earth’s gravitational field is 

(using Equation 8.6) 
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( ) ( )
( )

E E
final initial

E

11 2 2 24
7

E 6
E

6.67 10  N m /kg 5.97 10 kg1 6.25 10 J
6.37 10 m

GM m GM m
U U U

R

U GM
m R

−

Δ = − = − +
∞

× ×⎛ ⎞Δ
= = = ×⎜ ⎟⎝ ⎠ ×

⋅  

which is more energy than is contained in 1 kg of uranium! 

 47. INTERPRET This problem involves conservation of mechanical energy, which we can use to find the speed of 

Comet Halley when it reaches Neptune’s orbit, given its speed at the perihelion.  

DEVELOP At perihelion, the point of closest approach to the Sun, the comet’s distance from the Sun is 
10

i 8.79 10  mr = ×  and its speed is 354.6 10  m/s.v = ×  The distance of Neptune’s orbit is at 124.50 10  m.fr = ×  

We use conservation of energy: i i f fU K U K+ = + . 

EVALUATE Inserting the given quantities into the formula above gives 

( ) ( ) ( )

2 2

2

211 2 2 30 3
12 10

1 1
2 2

1 12

1 12 6.67 10  N m /kg 1.99 10  kg 54.6 10 m/s
4.50 10 m 8.79 10 m

4.48 km/s

i i f f

i f
i f

f i
f i

U K U K

Mm MmG mv G mv
r r

v GM v
r r

−

+ = +

− + = − +

⎛ ⎞
= ± − +⎜ ⎟

⎝ ⎠

⎛ ⎞
= ± × × − + ×⎜ ⎟× ×⎝ ⎠

=

⋅

 

where we take the positive square root because we are interested in the speed, not in the direction at which the 

asteroid is orbiting. 

ASSESS The speed changes by over 90%, but the energy does not change. 

 48. INTERPRET In this problem we compare the maximum height attained by a rocket when calculated with changing 
gravitational acceleration with that calculated under the assumption of a constant gravitational acceleration. 
DEVELOP If the rocket has an initial vertical speed v0, we can find the height h to which it can rise (where its 
kinetic energy is instantaneously zero) from conservation of total mechanical energy (Equation 7.7): 

2 E E
0 0 0

E E

1
2

GM m GM m
K U K U mv

R R h
+ = + ⇒ − = −

+
 

On the other hand, if we assume constant acceleration, then the height attained would be (from Equation 29) 

2 2 2 2
0 0 0 E

2
EE E2 22

v v v R
h

g GMGM R
= = =′  

where we have used 2
E E/g GM R= . 

EVALUATE Solving for h, we obtain 

E
E E2

E E0 E E

1 11 1
11 2

R
h R R h

h R R hv R GM
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= − = − = ′⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −− ′ ′⎝ ⎠ ⎝ ⎠⎝ ⎠
 

Since the factor multiplying h′ is ( ) 1,  E ER R h h h− > >′ ′  and the equations of constant gravity underestimate 

the height. For h' to differ from h by 1% [ i.e., (h – h')/h = 0.01], we require that h' = 0.99h. Thus, 

1
1 /

1 1
0.99 1 /

E

E

h
h h R

h R

=
−′ ′

=
− ′

 

or h' = 0.01RE. This gives  
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6
4E 6.37 10  m 6.43 10  m 64.3 km

0.99 99 99
Rhh ×′= = = = × =  

Thus, the equations for constant acceleration would underestimate the height. 

ASSESS We could have anticipated that h > h' because the force of gravity decreases with increasing altitude. 

 49. INTERPRET We want to show that an object lands on Earth with essentially the escape speed when it starts from 

rest far away from the Earth.  

DEVELOP Starting from rest means the initial kinetic energy is zero. The initial gravitational potential energy 

( 0 0/U GMm r= −  from Equation 8.6) is nearly zero, given that 0 E .r R  By conservation of energy, the object 

falls to the Earth's surface with kinetic and potential energy satisfying: 

 1 2
0 02

E 0

GMm GMmK U mv K U
R r

+ = − = + = −  

EVALUATE Solving for the velocity in the above equation gives: 

 E E
esc esc

E 0 E 0 0

1 1 22 1 1
2

R RGMv GM v v
R r R r r

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − = − − ≈⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

where we have used the definition of the escape velocity from Equation 8.7, as well as the binomial approximation 
from Appendix A, since E 0/ 1.R r   

ASSESS Since gravity is a conservative force, the scenario where an object falls to Earth from a great distance is 

just the time-reversal of the scenario where the object leaves Earth with the essentially escape velocity. It's like one 

movie played either forwards or backwards. So the landing velocity in the falling scenario should be the same as 

the take-off velocity in the escaping scenario. 

 50. INTERPRET In this problem we are asked to compare the speed of an object in circular orbit with its escape 

speed.  

DEVELOP The escape speed is the speed that makes the total energy zero: 

21 0
2

GMmE U K mv
r

= + = − + =  

However, gravitational force is what provides the centripetal force for an object to move in a circular orbit: 
2

2

GMm mvF
rr

= =  

EVALUATE From the above equations we find 

esc
2GMv
r

=  and 
GMmv
r

=  

where we have taken the positive square root because we are only interested in the speed, not its direction. Thus, 

the ratio of the escape speed to the orbital speed is 

esc 2
v
v

=  

ASSESS To escape from the orbit, the escape speed must be greater than its present orbital speed. Our calculation 

shows that the speed must increase by a factor of at least 2.  

 51. INTERPRET The question boils down to: is the comet's orbit open or closed? Will it orbit around the Sun multiple 

times (and therefore pass by the Earth again), or is it destined to escape our solar system?  

DEVELOP The comet's orbit is open if the given velocity is greater than the escape velocity: 2 / .v GM r=  In 

this case, the mass is the Sun and the radius is the Earth's distance from the Sun.  

EVALUATE The escape velocity from the Sun at Earth's orbital radius is 
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( ) ( )

( )

2

2
N m11 30
kgS

esc 9
E

2 6.67 10 1.99 10 kg2
42.1 km/s

150 10 m
GM

v
r

⋅−× ×
= = =

×
 

The comet is going faster than this escape velocity, so it is on a open (hyperbola) orbit, see Figure 8.9. It will not 

return to Earth's vicinity. 

ASSESS The escape velocity calculated here is much smaller than the 618 km/s escape velocity given in Appendix 

E for the Sun. But the larger value is the escape velocity from the Sun's surface. Farther away at the Earth's orbital 

radius the escape velocity doesn't need to be so high. Also note that the comet velocity is much greater than the 

Earth's escape velocity of 11.2 km/s, which just means that there's no danger of the comet getting captured in a 

closed orbit around Earth. 

 52. INTERPRET This problem involves conservation of total mechanical energy. We are to find the speeds of two 

meteoroids as they approach the Earth with different trajectories. 

DEVELOP Conservation of total mechanical energy (Equation 7.7) applied to the meteoroids gives: 

2 2E E
0 0 0

0

1 1
2 2

GM m GM m
K U K U mv mv

r r
+ = + ⇒ − = −  

Solving for v, we obtain 

2
0 E

0

1 12v v GM
r r

⎛ ⎞
= ± + −⎜ ⎟⎝ ⎠

 

We will take the positive square root because we are interested in speed, not in direction. 

EVALUATE (a) For the first meteoroid, its speed when it strikes the Earth ( Er R= ) is  

( ) ( ) ( )2 11 2 2 24
1 6 8

4

1 12100 m/s 2 6.67 10  N m /kg 5.97 10 kg
6.37 10  m 2.5 10  m

1.12 10 m/s 11.2 km/s

v − ⎛ ⎞= + × × −⎜ ⎟⎝ ⎠× ×

= × =

⋅
 

(b) For the second meteoroid, its speed at the distance of closest approach (r = 8.50 × 106 m) is  

( ) ( ) ( )2 11 2 2 24
2 6 8

3

1 12100 m/s 2 6.67 10  N m /kg 5.97 10 kg
8.50 10  m 2.5 10  m

9.74 10 m/s 9.74 km/s

v − ⎛ ⎞= + × × −⎜ ⎟⎝ ⎠× ×

= × =

⋅
 

(c) The escape velocity at a distance of r = 8.50 × 106 m from the center of the Earth is 

( ) ( )11 2 2 24
E

esc 6

2 6.67 10  N m /kg 5.97 10 kg2
9.67 km/s

8.5 10  m
GM

v
r

−× ×
= = =

×
⋅

 

Therefore, the second meteoroid will not return. Alternatively, escv at a distance of 250,000 km is  

1.78 km/s < 2.1 km/s, which leads to the same conclusion. 

ASSESS By conservation of total mechanical energy, the change in kinetic energy is equal to the negative of the 

change of potential energy: .K UΔ = −Δ  Because 1 2U UΔ < Δ  (the potential energy at the surface of the Earth is 

lower than that at r = 8500 km), we have 1 2 ,K KΔ > Δ  so the first meteoroid has a greater speed when it reaches 

the Earth, but less gravitational potential energy.  

 53. INTERPRET This problem involves the energy contained in orbital motion and position, which we will use to 

calculate the energy needed to put a satellite into circular orbit a height h above the surface of the Earth.  

DEVELOP The total energy of a circular orbit is given by Equation 8.8b, Eorbit = –GMEm/2r. In orbit, the radius r = 

RE + h. On the ground, the total mechanical energy of the satellite is Esurface = U0 + K0 = –GMEm/RE +mv2/2, where v 

is the velocity of the surface of the Earth as it rotates on its axis. However, we are instructed to neglect this (mv2/2 

~ 0.34% of |U0|), so we have Esurface = –GMEm/RE. Equate these two expressions for total mechanical energy to find 

the energy required to place a satellite in orbit. 
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EVALUATE The energy required to put a satellite into an orbit at a height h is therefore approximated by 

( ) ( )
( )
( ) ( )

EE E E E E
orbit surface

E E E E E E E

2 1 21
2 2 1 2 1 2

h RGM m GM m GM m GM m R h
E E

R h R R h R h R R R h
⎛ ⎞ ⎡ ⎤+⎛ ⎞ ⎛ ⎞ +−− = − + = + = ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦

 

which agrees with the formula in the problem statement. 

ASSESS Notice that the second factor in the result is dimensionless, and the first factor has units of energy, so the 

units work out to units of energy, as required. If we let h → 0, we find  

E
orbit surface

E2
GM m

E E
R

⎛ ⎞
− = ⎜ ⎟⎝ ⎠

 

which is the energy of a satellite orbiting around the Earth at zero altitude (i.e., an object sitting on the surface of 

the Earth). This is as expected, and just represents the neglected kinetic energy of the satellite due to the Earth’s 

rotation. Had we included this term, the difference would be zero. 

 54. INTERPRET In this problem we are asked about the speed of a projectile as a function of r given that its initial 

launch speed is twice the escape speed. Because all the forces (i.e. gravity) acting on the projectile are conservative 

forces, we can apply conservation of total mechanical energy. 

DEVELOP Conservation of total mechanical energy applied to the projectile (initially at RE) gives: 

2 2E E
0 0 0

E

1 1
2 2

GM m GM m
K U K U mv mv

R r
+ = + ⇒ − = −  or 2

0 E
E

1 1( ) 2v r v GM
r R

⎛ ⎞
= ± + −⎜ ⎟⎝ ⎠

 

We will use the positive square root because we are interested in speed, not direction. The escape speed is the 

speed that makes the total energy zero (Equation 8.7): 

E
esc

E

2GM
v R=  

EVALUATE If 0 esc2v v=  then the speed as a function of r becomes 

2
0 E E E

E E E

1 1 8 1 1 1 3( ) 2 2 2GMv r v GM GM GM
r R R r R r R

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + − = + − = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

ASSESS When r = RE, we find 

E E
esc

E E

8 2
( ) 2 2

GM GM
v R v

R R
= = =  

as expected. 

 55. INTERPRET This problem involves using conservation of total mechanical energy to find the speed of a satellite 

for several different orbits. It also requires applying Kepler’s third law to relate orbital radii to orbital periods. 

DEVELOP The speed of a satellite in a circular orbit is given by Equation 8.3, 2v GM r= , where r is the 

distance to the center of the Earth. If the speed is to change to v′  where v′  = 1.1v, then the orbital radius will 

satisfy ( )22 21.1v v GM r′= =′ , which gives ( ) 21.1r r−=′ . From this, we can solve for the difference in orbital 

height h r rΔ = − ′ . For part (b), take the ratio of Kepler’s third law (Equation 8.4) applied to each orbit. This gives 
2 3T r

T r
⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠′ ′

 

where the primed quantities are for the new orbit. Given that T ′  = 0.9T, we can again solve for h r rΔ = − ′  

EVALUATE (a) For a 10% increase in orbital speed, the orbital height decreases by 

( ) ( ) ( ) ( ) ( )2 2 26 6 6
E1 1.1 1 1.1 6.37 10 m 5.50 10 m 1 1.1 2.06 10 mh r r r R h− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤Δ = − = − = + − = × + × − = ×′ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

(b) For a 10% decrease in orbital period,  
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( )
( ) ( ) ( ) ( ) ( )

2 2 3

2 / 3

2 / 3 2 / 3 2 / 36 6 6

1
0.9

0.9

1 0.9 1 0.9 6.37 10 m 5.50 10 m 1 0.9 0.805 10 mE

T r
T r

r r

h r r r R h

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠′ ′

=′

⎡ ⎤ ⎡ ⎤ ⎡ ⎤Δ = − = − = + − = × + × − = ×′ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

ASSESS We find that the orbital height is more sensitive to orbital speed than it is to orbital period. 

 56. INTERPRET In this problem we want to find the impact speeds of two meteoroids as they approach the Earth with 

different initial speeds. Because only conservative forces (i.e., gravity) act on the asteroids, we can apply 

conservation of total mechanical energy. 

DEVELOP Conservation of energy applied to the meteoroids gives: 

2 2E E
0 0 0

0

1 1
2 2

GM m GM m
K U K U mv mv

r r
+ = + ⇒ − = −  

Solving for v, we obtain 

2
0 E

0

1 12v v GM
r r

⎛ ⎞
= ± + −⎜ ⎟⎝ ⎠

 

To find the impact speed, we set r = RE.  

EVALUATE For 4
1,0 10 km/s 1.0 10 m/s,v = = ×  the impact speed is  

( ) ( ) ( )2 11 2 2 24
1 6 8

4

1 110,000 m/s 2 6.67 10  N m /kg 5.97 10 kg
6.37 10  m 1.6 10  m

1.48 10 m/s 14.8 km/s

v − ⎛ ⎞= + × × −⎜ ⎟⎝ ⎠× ×

= × =

⋅
 

where we have taken the positive square root because we are interested in speed, not in direction. 

For 4
2,0 20 km/s 2.0 10 m/s,v = = ×  the speed is  

( ) ( ) ( )2 11 2 2 24
2 6 8

4

1 120,000 m/s 2 6.67 10  N m /kg 5.97 10 kg
6.37 10  m 1.6 10  m

2.28 10 m/s 22.8 km/s

v − ⎛ ⎞= + × × −⎜ ⎟⎝ ⎠× ×

= × =

⋅
 

ASSESS The final impact speed depends on the initial speed and the change of gravitational potential energy. 

Because 2,0 1,0,v v>  and the change in potential energy is the same for both, we have 2 1.v v>  

 57. INTERPRET This problem again involves conservation of total mechanical energy, this time applied to two 

rockets so that we can find their speeds when they cross the Moon’s orbit.  

DEVELOP  Conservation of energy applied to the rockets gives: 

2 2E E
0 0 0

0

1 1
2 2

GM m GM m
K U K U mv mv

r r
+ = + ⇒ − = −  

Solving for v, we obtain 

2
0 E

0

1 12v v GM
r r

⎛ ⎞
= ± + −⎜ ⎟⎝ ⎠

 

The initial position of the rockets is r0 = RE = , and the final position is r = RM = 3.85 × 108 m (Appendix E).  

EVALUATE Evaluating the above expression for the final speed v gives 

( ) ( ) ( ) ( )
2 11 2 2 24

1 8 6

1 112,000 m/s 2 6.67 10  N m /kg 5.97 10 kg 4.59 km/s
3.85 10 m 6.37 10 m

v −
⎛ ⎞

= + × × − =⎜ ⎟× ×⎝ ⎠
⋅

 

and  
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( ) ( ) ( ) ( )
2 11 2 2 24

2 8 6

1 118,000 m/s 2 6.67 10  N m /kg 5.97 10 kg 14.2 km/s
3.85 10 m 6.37 10 m

v −
⎛ ⎞

= + × × − =⎜ ⎟× ×⎝ ⎠
⋅

 

where we have taken the positive square root because we are interested in speed, not in direction. 

ASSESS As r → ∞ , v → 0 as expected because the second term under the radical becomes the escape speed, 

which would be equal to the first term for launching a rocket infinitely far from Earth.  

 58. INTERPRET This problem involves conservation of total mechanical energy, which we can use to find the speed 

of the satellite at the low point given its speed at the high point. 

DEVELOP Ignoring effects such as the gravitational influence of other bodies or atmospheric drag, we apply 

conservation of total mechanical energy (Equation 7.7, U0 + K0 = U + K) to the satellite in an elliptical Earth orbit. 

The speed and distance at perigee (the lowest point) are related to the same quantities at apogee (the highest point): 

2 2E E
a p

a p

1 1
2 2

GM m GM m
mv mv

r r
− = −  

Solving for vp, we obtain 

2
p a E

p a

1 1v v GM
r r

⎛ ⎞
= ± + −⎜ ⎟

⎝ ⎠
 

EVALUATE The distances to the two points, as measured from the center of the Earth, are  
6

p p E

6
a a E

230 km 6370 km 6600 km 6.60 10  m

890 km 6370 km 7260 km 7.27 10  m

r h R

r h R

= + = + = = ×

= + = + = = ×
 

Substituting the values given in the problem statement, the speed of the satellite at the perigee is 

( ) ( ) ( )2 11 2 2 24
p 6 6

1 17230 m/s 2 6.67 10  N m /kg 5.97 10 kg 7.96 km/s
6.60 10  m 7.27 10  m

v − ⎛ ⎞= + × × − =⎜ ⎟⎝ ⎠× ×
⋅  

where we have taken the positive square root because we are interested in speed, not in direction. 

ASSESS In the limit where the orbit is circular, p a ,r r= and we recover the expected result p a.v v= As we shall see 

in Chapter 11, the same result also follows from the conservation of angular momentum or Kepler’s second law, 

which implies that a a p p.v r v r=  Using this relation, we have 

( )
6

a
p a 6

p

7.27 10  m 7.23 km/s 7.96 km/s
6.60 10  m

r
v v

r
⎛ ⎞ ⎛ ⎞×

= = =⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠
 

The speed of the satellite at the low point (perigee) is greater than the speed at the high point (apogee).  

 59. INTERPRET This problem involves conservation of total mechanical energy, which we can use to find the speed 

of the missile at the apex of its trajectory. We ignore nonconservative forces such as air resistance, so that only 

gravity is considered to act on the missile.  

DEVELOP Applying conservation of total mechanical energy (Equation 7.7) gives 

2 2E E
0 0 0

E

1 1
2 2

GM m GM m
K U K U mv mv

R r
+ = + ⇒ − = −  or 2

0 E
E

1 1( ) 2v r v GM
r R

⎛ ⎞
= ± + −⎜ ⎟⎝ ⎠

 

We will take the positive square root because we are interested in the missile’s speed, not its direction. 

EVALUATE Inserting the r = RE + 1200 km and v0 = 6.1 km/s into the above expression, we find the speed at the 

apex of the trajectory is 

( ) ( ) ( ) ( )
2 11 2 2 24

66 6

1 16100 m/s 2 6.67 10  N m /kg 5.97 10 kg
6.37 10 m6.37 10 m 1.20 10 m

4.17 km/s

v −
⎛ ⎞

= + × × −⎜ ⎟×× + ×⎝ ⎠

=

⋅
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ASSESS If the missile was launched directly upward, it would reach a height of  

2E E
0

E E

6E
E2

E E 0

1
2

2.70 10 m
2

GM m GM m
mv

R R h
GM

h R
GM R v

− + = −
+

= − = ×
−

 

which is just over twice the height given in the problem statement. 

 60. INTERPRET In this problem we are asked about the orbital radius, and the kinetic energy and speed of a 

spacecraft, given its mass and total energy.  

DEVELOP The potential energy, kinetic energy and the total energy of an object in a circular orbit around the Sun 

are given by Equations 8.6, 8.8a and 8.8b:  

 

S

1 2 S
2

S

2

2

GM m
U

r
GM m

K mv
r
GM m

E U K
r

= −

= =

= + = −

 

These equations can be used to solve for the physical quantities we are interested. 

EVALUATE (a) Using the total energy equation and the fact that the prefix T stands for 1012, the orbital radius of 

the spacecraft is 

 
( ) ( ) ( )

( )

2

2
N m11 30
kg 10S

11
E

6.67 10 1.99 10 kg 720 kg
9.0 10 m

2 2 5.3 10 J
GM m

r
Er

⋅−× ×
= − = − = ×

− ×
 

(b) The kinetic energy of the spacecraft is  

 115.3 10 JK E= − = ×  

(c) The speed of the spacecraft is 

 
112 2 2( 5.3 10 J) 38 km/s

720 kg
K Ev
m m

− − − ×= = = =  

ASSESS The spacecraft's orbital radius (90 million km) puts it between the orbits of Mercury and Venus (57.6 and 

108 million km, respectively). The spacecraft's speed is also reassuringly in between the orbital speeds of Mercury 

and Venus (48 and 35 km/s, respectively).  

 61. INTERPRET Only conservative forces (i.e., gravity) act on Mercury. Therefore, we can apply conservation of total 

mechanical energy to find Mercury’s perihelion distance.  

DEVELOP Conservation of total mechanical energy (Equation 7.7) gives 

0 0

2 2S S
a p

a p

1 1
2 2

K U K U
GM m GM m

mv mv
r r

+ = +

− = −  

which we can solve for the perihelion distance rp.  

EVALUATE Solving the expression above for rp and inserting the given quantities gives 

 
( ) ( )

( ) ( ) ( ) ( ) ( )

S
2 2
p a S a

11 2 2 30

3 3 11 2 2 30 10

10

2
2

2 6.67 10  N m /kg 1.99 10  kg

59.0 10 m/s 38.8 10 m/s 2 6.67 10  N m /kg 1.99 10  kg 6.99 10 m

4.60 10 m

p
GM

r
v v GM r

−

−

=
− +

× ×
=

× − × + × × ×

= ×

⋅

⋅
 



8-22 Chapter 8 

 
© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may 

be reproduced, in any form or by any means, without permission in writing from the publisher. 

ASSESS Kepler’s second law provides a more direct solution: 

( ) ( ) ( )10 10
p a a p/ 6.99 10  m 38.8/59.0 4.60 10  mr r v v= = × = ×  (see the solution to Problem 58). 

 62. INTERPRET In this problem we are asked to show Equation 8.5 reduces to U mg rΔ = Δ  when 1 2.r r≈  

DEVELOP Following the hint, we write 2 1 ,r r r= + Δ  so Equation 8.5 becomes 

( ) ( )
2 2

2
1 2 1 2 1 1 1 1

1 1
1

r r GMm r GMmU GMm GMm r
r r r r r r r r r r

⎛ ⎞ ⎛ ⎞− Δ
Δ = − = = = Δ⎜ ⎟ ⎜ ⎟ + Δ + Δ⎝ ⎠ ⎝ ⎠

 

EVALUATE  Because r rΔ we can neglect the second term in brackets in the denominator, leading to 

2
1

GMmU r
r

Δ ≈ Δ  

Because the gravitational acceleration at a distance r1 from the center of the gravitating body of mass M is 

( ) 2g r GM r= , the above expression can be rewritten as  

( )U mg r rΔ ≈ Δ  

Near the Earth’s surface ( ) 2 2
E/ 9.8 m/sEg R GM R g= = =  is essentially constant, so .U mg rΔ ≈ Δ  

ASSESS When 1 2 ,r r≈  the gravitational accelerations at these two distances are very close; ( ) ( )1 2 .g r g r≈ In this 

limit, the change in gravitational potential energy only depends on 2 1.r r rΔ = −  The equation U mg yΔ = Δ  is 

precisely what we used in Chapters 2 and 3 where the kinematics setting was always taken to be close to the 

Earth’s surface, with g assuming a constant value of about 9.8 m/s2. 

 63. INTERPRET This problem involves Kepler’s third law, which we can apply to find the orbital periods of the 

satellites in their various orbits.  

DEVELOP  In a lower circular orbit (smaller r) the orbital speed is faster (see Equation 8.3). The time for 10 

complete orbits of the faster satellite must equal the time for 9.5 geosynchronous orbits. Thus, 10 9.5 ,T T=′  where 

the prime indicates the faster, lower orbiting satellite. Thus, the ratio of the orbital periods is /T T′  = 0.95. 

Knowing the ratio of the periods, we can find the radius of the lower orbit by applying Kepler’s third law to both 

orbits and taking the ratio. 

EVALUATE The ratio of Kepler’s third law applied to both orbits gives 

( )

( )
( ) ( )

2 3
2

2 / 3

2 / 3 6 3

0.95

0.95

1 0.95 42.2 10 m 1.42 10 km

T r
T r

r r

r r r

′ ′⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

=′

⎡ ⎤− = − × = ×′ ⎣ ⎦

 

where we have used the orbital radius r = 42,200 km from Example 8.3. 

ASSESS To catch up with the other satellite in a single orbit, we would have to descend a distance  

( ) ( )2 / 3 6 31 0.5 42.2 10 m 15.6 10 kmr r r ⎡ ⎤− = − × = ×′ ⎣ ⎦  

which would leave the satellite at a height of 42.2 Mm –15.6 Mm = 26.6 × 103 km. 

 64. INTERPRET In this problem we are asked to derive the period of a “binary system” that consists of two objects of 

equal mass M orbiting each other.  

DEVELOP The gravitational force between two masses separated by a distance d is given by Equation 8.1:  

 
2

2

GMF
d

= −  

The gravitational force is also the centripetal force that keeps the two masses orbiting about a common center, see 

figure below.  
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r

 
With radius / 2r d=  and period T, the objects move around each other with a velocity of 2 / .v r Tπ=  Therefore, 

the centripetal force acting on one of the masses is 

 ( )
( )

22 2

2

/ 2
/ 2

M d TMv MdF
r d T

π π= − = − = −  

The minus sign here indicates that the force is directed opposite to the radius vector, .r  

EVALUATE Equating the two force equations from above gives the following expression for the period: 

 
2 3

2 2 dT
GM
π

=  

ASSESS Our result is in agreement with Kepler’s third law, which states that the square of the period is 

proportional to the cube of the semi-major axis, which in this case translates into 2 3.T r∝  If the diameter 

increases in this binary system, the period will correspondingly increase as well.  

 65. INTERPRET This problem involves Kepler’s third law, which we will apply to convert the rate of change in the 

orbital period of the Moon to the rate of change in its orbital distance (i.e., its radial speed). We assume that the 

Moon’s orbit is approximately circular for this calculation. 

DEVELOP Kepler’s third law relates the orbital period to the semimajor axis of an elliptical orbit (of which a 

circular orbit is a special case): T2 = 4π2r3/(GM). We are told the rate of change is  

3 11s 1 y 1 d35 10 1.11 10
100 y 365 d 86,400 s

dT
dt

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= × = ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

so we can differentiate Kepler’s law to find the rate of change in the orbital radius r. 
EVALUATE Differentiating Kepler’s law gives 

( ) ( ) ( )
( )

( )

2 3 2

11 2 2 22
11

2 2 8

10

4 3 4
2

6.67 10  N m /kg 7.35 10 kg2 21.11 10
3 34 4 3.85 10 m

86, 400 s 36500 d 100 cm1.33 10 m/s 41.9 cm /c
1 d 1 c 1 m

dT d r r dr
dt dT GM GM dt

dr dT GM
dt dt r

π π

π π

−
−

−

= ± =

⎛ ⎞× ×⎛ ⎞
⎜ ⎟= = ×⎜ ⎟ ×⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= × =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⋅
 

where we have taken the positive square root because the orbital radius is increasing, not decreasing. 

ASSESS At this speed, we don’t have to worry about the Moon leaving any time soon! 

 66. INTERPRET Your job is to avoid having a high jumper jump from an asteroid with enough kinetic energy to 

escape the asteroid. You will therefore have to find the minimum size asteroid that this won't happen.  

DEVELOP From the derivation for the escape speed (Equation 8.7), we know that the jumper will not escape the 

asteroid if his/her total energy is less than zero: 0.K U+ <  The potential energy on the surface of the asteroid is 

given by Equation 8.6: 0 / ,U GMm R= − where M is the mass of the asteroid, m is the mass of the jumper, and R is 

the radius of the asteroid. Assuming a spherical asteroid, the mass and radius are related through the given density: 
4 3
3 ,M Rπ ρ= and the potential energy at the surface becomes 
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( )4 3

3 4 2
0 3

G R m
U G R m

R

π
π

ρ
ρ= − = −  

EVALUATE For safety, you're told to be prepared for a jump that would reach 3 m on the Earth's surface. By 

conservation of energy arguments, this corresponds to a maximum kinetic energy of max ,K mgh=  where g is the 

Earth's gravitational acceleration and h is the height of the jump. In order to keep a jumper jumping with 

maxK from flying off into space, the asteroid's surface potential must satisfy max 0,K U< − which translates into a 

lower limit on the asteroid radius: 

 
( ) ( )

( ) ( )2

2

2

N m11 3
kg

3 9.8 m/s 3 m3 6500 m
4 4 6.67 10 2500 kg/m

ghR
Gπ ρ π ⋅−

< = =
×

 

The minimum asteroid diameter is therefore 13 km. 

ASSESS Asteroid sizes vary over a wide range. The largest known asteroid is Ceres, with a diameter of 933 km. 

There should be plenty of asteroids big enough to meet the safety standard for the 2040 Olympics.  

 67. INTERPRET You need to determine if a hockey puck hit at the maximum known speed could somehow enter orbit 

around the Moon.  

DEVELOP Let's assume the puck is hit in a direction more or less parallel to the Moon's surface. The easiest orbit 

to reach would be a circular orbit with radius just slightly greater than the Moon's surface radius: M.r R  From 

Equations 8.8a and b, this lowest energy orbit has kinetic energy, M M/ 2 .K GM m R=  

EVALUATE What speed would a hockey puck have to be hit at to reach the lowest energy orbit from above? 

 ( )M
esc,M

M

2 1 1 2.38 km/s 6100 km/h
2 2

GMKv v
m R

= = = = =  

Notice that we have used the escape velocity from the Moon, given in Appendix E. In any case, there's no danger 

that a 168 km/h puck will go into lunar orbit. 

ASSESS Notice that the minimum orbital velocity is only 30% smaller than the escape velocity.  

 68. INTERPRET This problem involves Newton’s law of universal gravitation. We will use it to estimate the ratio of 

tidal forces due to the Sun and the Moon, and compare that ratio with the ratio of gravitational forces due to the 

Sun and the Moon. Tidal forces are proportional to the change in the force due to gravity with respect to distance. 
DEVELOP Differentiate Equation 8.1, F = Gm1m2/r

2, to find the ratio of the spatial derivative for the Moon (m2 = 
7.35 × 1022 kg, r = 3.85 × 108 m) to the spatial derivative for the Sun (m = 1.99 × 1030 kg, r = 1.5 × 1011 m). We will 
also compare the ratio of the forces on the Earth due to the Moon and the Sun. 
EVALUATE  Inserting the known quantities, we find the ratio of the variation in force with distance to be  

( ) ( )
( ) ( )

E SS 38 303 3
S M S

3 311 22M E S S M
3

M

2 3.85 10 m 1.99 10 kg
0.45

1.5 10 m 7.35 10 kg2

M MdF G
r r Mdr

dF M M r MG
dr r

− × ×
= = = =

× ×−
 

The ratio of gravitational forces is  

( ) ( )
( ) ( )

E S 28 302 2
S S M S

2 211 22E MM S M
2

M

3.85 10 m 1.99 10 kg
177

1.5 10 m 7.35 10 kg

M M
G

F r r M
M MF r MG
r

× ×
= = = =

× ×
 

ASSESS We see that the gravitational force due to the Sun is much higher than that due to the Moon, but the force 

due to the Moon changes more from one side of the Earth to the other. Thus, the Moon’s gravity causes the 

majority of the tidal effects. Note that when the Moon and the Sun are both positioned on the same side of the 

Earth, their tidal forces add, so we have maximum tides. The opposite is true when the Moon and the Sun are on 

opposite sides of the Earth. 
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 69. INTERPRET We're asked to calculate the position of the L1 Lagrange point, where the gravity of the Earth and the 
Sun combine to give a period of 1 year around the Sun. It's worth noting that when only the Sun's gravity is 
considered, the only place with a 1-year period would be at the Earth's orbital radius: 

 
2 3

E
E

S

4
1 y

r
T

GM
π

= =  

where we have used Equation 8.4 with Er the Earth's distance from the Sun, and SM the mass of the Sun. 

DEVELOP Let's assume that the point L1is at a distance LEr  from the Earth and a distance LSr from the Sun. From 

the remarks in the text, we know that L1 is between the Earth and the Sun, so LE LS E .r r r+ =  The sum of the 

gravitational attraction from both bodies is 

 S E
net 2 2

LS LE

GM m GM m
F

r r
= −  

This sum supplies a centripetal force that keeps any object there in uniform circular motion around the Sun: 
2

net LS/ .F mv r=  The orbital speed results in a period of LS2 / ,T r vπ= which by definition is equal to one year. 

Combining all this information, we have: 

 
2

S LSE
2 2 2

LS LE

4GM rGM
r r T

π
− =  

We will now substitute LS E LE ,r r r= − as well as introduce the variables LE E/x r r=  and E S/ ,y M M= in order to 

obtain: 

 
( ) ( )

2 3 2
E E

3 2 2 2
S

41 1
11

r Ty
x x GM T Tx

π
− = = =

−−
 

Notice how we were able to substitute the Earth's orbital period, E ,T into the right-hand side of the equation. Both 

the Earth's period and the period at L1 are equal to 1 year, so they cancel.  

EVALUATE We are now faced with a rather difficult equation to solve: 

 
( )2 2

1 1
1

y x
xx

− = −
−

 

But we can assume that the Lagrange point is much closer to Earth than to the Sun, so 1.x In which case, the 

first term on the left can be reduced using the binomial approximation: ( ) 21 1 2x x−− ≈ +  (see Appendix A). We 

then have 

 
( )
( )

24
E3 3 3

30
S

5.97 10 kg
=0.01

3 3 3 1.99 10 kg
Myx
M

×
≈ = =

×
 

This implies that L1 is 1% of the distance between the Earth and the Sun. Relative to the Earth, L1 is at a distance 

of 

 ( )6 6
LE E0.01 0.01 150 10 km 1.5 10 kmr r≈ = × = ×  

ASSESS One can check in an outside reference that indeed the L1 Lagrange point is around 1.5 million km from 

Earth. There are 4 other Lagrange points, called L2, L3, L4 and L5. Like L1, they are all stationary points, 

meaning an object situated there will not move relative to the Earth and Sun.  

 70. INTERPRET We consider the characteristics of the Global Positioning System. 

DEVELOP We're told that the GPS satellites are in orbit at an altitude of about 20,200 km. To find the period, we 

use Equation 8.4:  

 
( )32

E2

E

4 R h
T

GM
π +

=  

where for the orbital radius we take into account the radius of the Earth, E ,R and the altitude, .h   
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EVALUATE Plugging in the known values, the period of one of the satellites is 

 
( )

( ) ( )

32 6 6
4

2N m11 24
2kg

4 6.37 10 m 20.2 10 m
4.31 10 s 12 h

6.67 10 5.97 10 kg
T

π
⋅−

× + ×
= = × =

× ×
 

The answer is (c). 

ASSESS The GPS satellites circle the Earth twice a day, which means that a given satellite is in the sky over a 

particular point for a few hours. Optimally a GPS receiver will have 4 satellites in view in order to compare their 

different signals and provide an accurate reading of the receiver's position.  

 71. INTERPRET We consider the characteristics of the Global Positioning System. 

DEVELOP The satellite speed can be found from Equation 8.3: ( )E E/ ,v GM R h= +  where as in the previous 

problem we write the orbital radius as the sum of the radius of the Earth, E ,R and the altitude, .h   

EVALUATE Plugging in the known values, the speed of one of the satellites is 

 ( )
( ) ( )

( )

2N m11 24
2kgE

6 6
E

6.67 10 5.97 10 kg
3.9 km/s

6.37 10 m 20.2 10 m
GM

v
R h

⋅−× ×
= = =

+ × + ×
 

The answer is (d). 

ASSESS This is slower than the International Space Station, which orbits at 7.7 km/s (see Example 8.2). However, 

the station is much closer to Earth at an altitude of 380 km. It completes an orbit in 90 min, as compared to 12 

hours. 

 72. INTERPRET We consider the characteristics of the Global Positioning System. 

DEVELOP The escape speed is given by Equation 8.7: ( )E E2 / .v GM R h= +  

EVALUATE Notice that this is 2  times the orbital speed found in the previous problem: 

 ( )esc 2 2 3.9 km/s 5.5 km/sv v= ⋅ = =  

The answer is (b). 

ASSESS At the Earth's surface, the escape speed is roughly twice this: 11.2 km/s, but that appears to be just a 

coincidence.  

 73. INTERPRET We consider the characteristics of the Global Positioning System. 

DEVELOP The total energy of an object in a circular orbit is given in Equation 8.8b: ( )E E/ 2 .E GM m R h= − +  

EVALUATE Using the mass for the next generation of GPS satellites, the total energy is 

 ( )
( ) ( ) ( )

( )

2N m11 24
2kgE

6 6
E

6.67 10 5.97 10 kg 844 kg
6.3 GJ

2 2 6.37 10 m 20.2 10 m
GM m

E
R h

⋅−× ×
= − = − = −

+ × + ×
 

The answer is (d). 

ASSESS The total energy is negative because the satellites are in bound orbits around the Earth. 


